
Coupling for Eclipse

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents ..

 3rd Party Tool Integrations ...

 Coupling for Eclipse .. 1

 Introduction ... 3

 Supported EclipseIDE and CDT version combinations 4

 Documentation Updates 5

 Brief Overview of Documents for New Users ... 5

 Abbreviations .. 5

 Typical Use Case ... 6

 Installation ... 7

 Requirements 7

 Lauterbach TRACE32 Eclipse Plug-In 8

 Add the Lauterbach TRACE32 Update Site 8

 Install the Plug-In 11

 Create Launch Configurations ... 12

 Debugger Startup .. 16

 Parameters for the Startup Script t32.cmm 16

 Invoke PRACTICE Scripts 16

 Invoke a Script from the Toolbar 17

 Add the Lauterbach Logo Button 17

 Single-Core Launch with Multiple Eclipse Projects 18

 Multi-Core Launch Configurations 18

 Breakpoint Synchronization ... 19

 Edit Source Functionality ... 20

 Troubleshooting .. 21

 Eclipse 21

 BreakpointSynchronization and EditSource fail 21

 Not all Source Code files are defined inside an Eclipse Project 21

 Source Code Path names don’t match between TRACE32 and Eclipse 21

 Plug-in Connect Error Message in TRACE32 22

 Update Site not Found (http-ProxySettings OK) 23

 Using a LocalUpdateSite for installation: 23
 Coupling for Eclipse 1
©1989-2015 Lauterbach GmbH

 Failed to Connect to TRACE32 23

 Unable to Load Class 23

 TRACE32 24

 Check Your TRACE32 Version 24

 Illegal Character (xxxx) for this Context 24

 Symbol not Found 24

 Symbol not Found in this Context 24

 t32.cmm not Executed 24

 Help Us Help You 25

 Export the Eclipse Error Log 25

 Export the Eclipse Configuration 25

 Export TRACE32 Information 25

 Change Log .. 26
 Coupling for Eclipse 2
©1989-2015 Lauterbach GmbH

Coupling for Eclipse

Version 28-Oct-2015

Introduction

The Lauterbach TRACE32 Eclipse plug-in provides “loose coupling” between Eclipse IDE and the
TRACE32 GUI. Both environments are used for the tasks they are best suited for: Eclipse IDE for
development (coding, build, version control), TRACE32 for debugging.
 Coupling for Eclipse 3 Introduction
©1989-2015 Lauterbach GmbH

The plug-in supports the features most requested by Lauterbach customers:

• Start TRACE32 from an Eclipse launch configuration

• Support for multiple projects (multi-core)

• Synchronization of breakpoints between Eclipse and TRACE32

• ’Open source file’ functionality from TRACE32 to Eclipse and vice versa

The plug-in does not provide access to the full TRACE32 debug functionality (go, stop, step, variable
view, …) from within Eclipse. If you need this, please consider using TRACE32 as gdbserver (see below).

Supported Eclipse IDE and CDT version combinations

Other versions may work, but have not been tested by Lauterbach.

Please understand that we cannot test, debug and support installations with modified Eclipse or CDT
components. If an IDE is “based on Eclipse” or “derived from Eclipse/CDT”, it usually contains heavily
modified components that often break standard plug-in compatibility. For these environments, using
TRACE32 as gdbserver (see below) might be a viable alternative.

TRACE32 also supports the gdbserver protocol (api_gdb.pdf). With this, an Eclipse/CDT “external gdb”
debug configuration can be used for application debugging with TRACE32.

Eclipse 4.5 (Mars) with CDT 8.7

Eclipse 4.4 (Luna) with CDT 8.6

Eclipse 4.3 (Kepler) with CDT 8.2

Eclipse 4.2 (Juno) with CDT 8.1

Eclipse 3.7 (Indigo) with CDT 8.0

Eclipse 3.6 (Helios) with CDT 7.0

Eclipse 3.5 (Galileo) with CDT 6.0

Eclipse 3.4 (Ganymede) with CDT 5.0

Eclipse 3.3 (Europa) with CDT 4.0

NOTE: For using the plug-in a TRACE32 software update may be required.

For full functionality the TRACE32 software must be from
February 2013 (build rev. 42425 or later).
 Coupling for Eclipse 4 Introduction
©1989-2015 Lauterbach GmbH

Documentation Updates

The latest version of this document is available for download from:
http://www.lauterbach.com/eclipse/doc/int_eclipse.pdf.

Brief Overview of Documents for New Users

Architecture-independent information:

• ”Debugger Basics - Training” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• ”T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your debug cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “RTOS Debugger” (rtos_<x>.pdf): TRACE32 PowerView can be extended for operating system-
aware debugging. The appropriate RTOS manual informs you how to enable the OS-aware
debugging.

Abbreviations

GUI Graphical User Interface

IDE Integrated Development Environment

JDK Java Development Kit

JRE Java Runtime Environment

SMP Symmetric Multi-Processing
 Coupling for Eclipse 5 Brief Overview of Documents for New Users
©1989-2015 Lauterbach GmbH

http://www.lauterbach.com/eclipse/doc/int_eclipse.pdf

Typical Use Case

The Eclipse plug-in for Lauterbach TRACE32 provides “loose coupling” between the Eclipse IDE and the
TRACE32 GUI.

The plug-in adds an Eclipse Launch Configuration to start an installed TRACE32 debugger.

For TRACE32 instances started via this mechanism (and only for these), the plug-in enables you to:

• Synchronize breakpoints between Eclipse IDE and TRACE32

• Open an Eclipse IDE source editor with the same file as currently displayed in TRACE32 via the
TRACE32 context menu entry Edit Source.

• Open a TRACE32 Data.List window with the same file as displayed in the editor pane from the
Eclipse IDE context menu Open in Trace32.

A typical workflow is to implement a new feature inside Eclipse, build the executable file, and use TRACE32
for debugging:

1. After the build, in the Eclipse IDE select a Debug Launch Configuration that starts TRACE32.

2. TRACE32 invokes a PRACTICE script (provided by you) to set up the target.

3. The PRACTICE script downloads the modified executable to the target.

4. The PRACTICE script starts the executable for debugging with TRACE32.

5. When the position of an error is identified, a right-click on its source line in the TRACE32
Data.List window opens a context menu.

6. Selecting Edit Source from the context menu jumps back to the same file position in Eclipse.

7. Eclipse opens the requested source file and positions the cursor on the correct line.

8. The error is fixed (e.g., by you).

9. To verify the fix is correct, a breakpoint is set inside Eclipse at the affected source line.

10. The breakpoint is communicated from Eclipse IDE to TRACE32.

11. You re-build the changed executable, load it into the target, and start it (e.g., with a script).
The processor will stop at the breakpoint set earlier.

NOTE: Eclipse needs all source code to be organized within Eclipse projects.

If a source file is not part of an Eclipse project, the plug-in will not be able to
communicate breakpoints or provide the Edit Source functionality for it.
 Coupling for Eclipse 6 Typical Use Case
©1989-2015 Lauterbach GmbH

Installation

Requirements

• TRACE32 installation from February 2013 or later

• Eclipse IDE and CDT versions as listed in the Introduction section

• Eclipse configured for Java Runtime Environment (required minimum is JRE 1.5.0_12)

• Correct http-proxy configuration for download and installation of the plug-in
(only required if you use an HTTP proxy at your development site)

If the TRACE32 installation is too old, the plug-in will not work correctly. In the AREA window, TRACE32
then prints error messages like

If the Java Runtime Environment used for Eclipse is too old, you will get this error message:

To use the TRACE32 plug-in for Eclipse, you first need the Eclipse IDE itself, complete with the “Eclipse C/
C++ Development Tooling” (CDT). Both are available from www.eclipse.org.

illegal character (xxxx) for this context

Plug-in com.lauterbach.trace32.debug.t32 was unable to load class
com.lauterbach.trace32.debug.internal.ui.T32LaunchConfigurationTabGroup

NOTE: Set the http-proxy configuration in the Eclipse dialog Window > Preferences, in
the section Install/Update or in General > Network Connections.

(The exact location depends on your Eclipse version.)
 Coupling for Eclipse 7 Installation
©1989-2015 Lauterbach GmbH

Lauterbach TRACE32 Eclipse Plug-In

Install the plug-in via the Eclipse dialog Help > Software Updates (up to Eclipse 3.4) or via
Help > Install New Software (Eclipse 3.5 and later).

Add the Lauterbach TRACE32 Update Site

First you need to add the Lauterbach TRACE32 Update Site to the list of remote sites Eclipse IDE can
install updates and new software from. The correct URL is http://www.lauterbach.com/eclipse

The Eclipse IDE option path to install a new plug-in starts in the Help menu. The exact dialog sequence and
naming has changed with almost every major Eclipse IDE version.

This is how the Edit Remote Site dialog looks in Eclipse (before 3.3):

NOTE: Your Linux or Windows user account needs to have the necessary rights to
install and update plug-ins for Eclipse.
Otherwise the Lauterbach TRACE32 Eclipse Plug-In can not be properly
installed or updated.

NOTE: If you add a ’/’ slash character to the end of the URL, older Eclipse IDE versions
may have a problem to connect to the Update Site.
 Coupling for Eclipse 8 Installation
©1989-2015 Lauterbach GmbH

http://www.lauterbach.com/eclipse

Here is the New Update Site variant of Eclipse 3.3:

The Eclipse 3.4 Add Site version:
 Coupling for Eclipse 9 Installation
©1989-2015 Lauterbach GmbH

This is how it looks in Eclipse 3.5 and later:

NOTE: Please make sure you have set up correct http-proxy settings for Eclipse before
you start the plug-in installation.

If your settings are correct, but installation still fails, please refer to the
Troubleshooting section for a workaround.
 Coupling for Eclipse 10 Installation
©1989-2015 Lauterbach GmbH

Install the Plug-In

1. With configured Lauterbach TRACE32 Update Site, select the plug-in in the Install dialog:

2. Follow the Eclipse installation wizard.

3. Newer plug-in versions are signed, so you may be prompted to confirm trust to the Lauterbach
signature. For older plug-in versions, please confirm unsigned installation:

4. When prompted to do so, please restart Eclipse.

Congratulations, plug-in installation is complete.
 Coupling for Eclipse 11 Installation
©1989-2015 Lauterbach GmbH

Create Launch Configurations

The Eclipse plug-in starts the TRACE32 GUI via an Eclipse Launch Configuration.

This document refers to Debug Configuration dialogs only, but a Run Configuration dialog can also be
used if the Eclipse IDE is not involved in the debugging part (e.g. for just downloading a new build to the
target, for performance tests or for tracing).

1. Create or import an Eclipse project. Otherwise the plug-in does not “know” which TRACE32
instance it belongs to. Breakpoint Synchronization, Edit Source or Open in Trace32 will only
work with files from an Eclipse project.

2. Open Run > Debug Configurations to set up a Debug Launch Configuration.
 Coupling for Eclipse 12 Create Launch Configurations
©1989-2015 Lauterbach GmbH

3. In the Debug Configurations dialog select Lauterbach Trace32 Debugger and add a new
configuration with the context menu (right mouse button), opening this dialog:

4. Choose and enter a name for your Debug Configuration.

5. Set the For Project field to the name of the Eclipse project with your source files.

NOTE: Please avoid spaces and special characters in the “Name” field if you want to
pass parameters to t32.cmm. (“Parameters for the Startup Script t32.cmm”,
page 16.)
E.g. on Windows, a space is the parameter separator, therefore the number and
order of parameters on the command line will change if you use spaces within a
parameter.
 Coupling for Eclipse 13 Create Launch Configurations
©1989-2015 Lauterbach GmbH

6. In the field T32 executable, enter the path to the TRACE32 GUI application that you want to start
with this launch configuration. The file name of the TRACE32 executable depends on your target
architecture (t32marm.exe for ARM, t32mzsp.exe for ZSP500, etc.).

7. In the field Configuration File enter the TRACE32 configuration file to be used with the
executable.

8. Select the Edit Configuration File tab and add this to your TRACE32 configuration file:

The entries above configure TRACE32 to accept commands via the built-in “Remote API” and are a
prerequisite for connecting with the Eclipse plug-in. The port number (20006 in the sample) can be
chosen rather freely, it just needs to be unique among all concurrently active connections between
TRACE32 and Eclipse. It also must not be used by other programs on the host.

9. The Eclipse plug-in will parse the chosen configuration file and extract the relevant configuration data.

10. Now please check that the values for Communication Port and t32.cmm Startup Script location
are correct:

NOTE: Windows marks executable files with a file name suffix, e.g. t32marm.exe
Linux uses file permissions, the name of the executable is just t32marm

;T32 API Access
RCL=NETASSIST
PACKLEN=1024
PORT=20006

<- mandatory empty line
<- optional comment line

<- mandatory empty line

NOTE: An empty line before and after the text block is required!

From plug-in version 1.3.3, comment lines in the configuration file are ignored, and
configuration files generated (on Windows) by t32start.exe can be used directly.

NOTE: When started, TRACE32 looks for a file with the name t32.cmm in its current
working directory. If the file is found, the built-in PRACTICE interpreter will
automatically read and execute this file as its Startup Script.

The t32.cmm file which comes with the TRACE32 installation DVD sets the
number base (radix), loads extra buttons and the language-specific menu, and
restores the command line history.
 Coupling for Eclipse 14 Create Launch Configurations
©1989-2015 Lauterbach GmbH

11. Set the T32 Initial Working Directory for TRACE32 when it is launched by the plug-in. This
directory will be the initial working directory for scripts started in TRACE32.

12. With a correct configuration in place, click the Debug button to launch TRACE32.

NOTE: TRACE32 displays the initial working directory when you enter the PWD (=”print
working directory”) command directly after TRACE32 starts.

NOTE: -With plug-in version 1.3.8, CDT Build Variable support was added. For
example ${workspace_loc} is the current Eclipse workspace directory.
-With plug-in version 1.4.1, CDT Project Variable support was added. For
example ${ProjDirPath} is the current project directory. (A project must be
specified in the “For Project” field)

Browse... resolves any variables to display the selected path/name location
and can be used to check if a path/name with variables actually points to what
you want. After checking, select Cancel to keep your variables, otherwise the
resolved ’absolute’ path/name will replace the former definition.
 Coupling for Eclipse 15 Create Launch Configurations
©1989-2015 Lauterbach GmbH

Debugger Startup

Parameters for the Startup Script t32.cmm

When Eclipse starts TRACE32, the startup script t32.cmm receives several positional parameters:

1. Path to the Eclipse workspace (parameter &workspace in the script below)

2. Name of the Eclipse project (&project)

3. Name of the launch configuration (&launchconfig)

4. Contents of the field PRACTICE script, as set in the launch dialog
(&invokeme, ¶m1 ¶m2)

The sample code below can be included into t32.cmm. The do &invokeme ¶m1 ¶m2 line
simulates pressing the Invoke button directly after starting up TRACE32:

Invoke PRACTICE Scripts

When you click the Invoke button on the Debug Configuration dialog, an already running TRACE32
instance (that was started with this launch configuration) executes the given PRACTICE script file.

This script can e.g., be used after a rebuild for downloading an object (e.g. ELF) file to the target or to
execute other configuration tasks. A relative path name for PRACTICE script will use the current working
directory of TRACE32 - at the time of invoking the script - as its base directory.

The invoked PRACTICE script receives all parameters provided in the text field. The sample script below
reads the first 10 parameters (or less, if fewer available) and prints them:

If you want the PRACTICE script to be executed directly after TRACE32 launches, you can also call it from
t32.cmm as shown in the section above.

If this is not possible or desired, the checkbox Auto-invoke after launch will make the Eclipse plug-in ask
TRACE32 to execute the specified script ca. seven seconds after launching the debugger.

;(+) invoke sample for inclusion in t32.cmm
entry &workspace &project &launchconfig &invokeme ¶m1 ¶m2
print "workspace=&workspace project=&project launchconfig=&launchconfig"
do &invokeme ¶m1 ¶m2
;(-) invoke sample for inclusion in t32.cmm

entry &a &b &c &d &e &f &g &h &i
print "a=&a b=&b c=&c d=&d e=&e f=&f g=&g h=&h i=&i j=&j"
 Coupling for Eclipse 16 Debugger Startup
©1989-2015 Lauterbach GmbH

Invoke a Script from the Toolbar

You can have a running TRACE32 instance start a script with the Lauterbach Logo button in the Eclipse C/
C++ Perspective toolbar. This is a shortcut for the Invoke button in the Debug Configuration dialog.

The Lauterbach Logo button executes the TRACE32 PRACTICE script set in the Debug Configuration
for the Eclipse C/C++ project that the currently active editor window belongs to.

Add the Lauterbach Logo Button

To add the Lauterbach Logo button to the C/C++ Perspective toolbar:

1. Open the toolbar’s context menu (right-click).

2. Choose Customize Perspective.

3. Activate the command group Lauterbach TRACE32.

NOTE: PRACTICE script name and parameters are used as they were set at the time of
the TRACE32 launch (i.e. the settings the debugger was started with).

Changes made later in the Debug Configuration dialog (e.g., in parameters
passed to the script) are only used when TRACE32 is launched next time.
 Coupling for Eclipse 17 Debugger Startup
©1989-2015 Lauterbach GmbH

Single-Core Launch with Multiple Eclipse Projects

Larger development projects often organize their source files in multiple separate Eclipse projects.

If you have such a project, please specify one of the projects in the launch configuration dialog and check
Use this launch for all projects. The Lauterbach plug-in will then use this launch setting for all
communication (Breakpoint Synchronisation, Edit Source, ...) with TRACE32.

Please be aware that this option will currently not work in a multi-core scenario:

• When multiple instances of TRACE32 are started (=one for each core in the target system), the
plug-in cannot correlate the current source with the matching debugger instance.

• Therefore a setup with multiple cores and multiple Eclipse projects is currently not supported.

Multi-Core Launch Configurations

For each of your cores in a non-SMP setup, you need to create a separate Eclipse project. This is natural as
the cores will each execute their own specific application. For handling such multi-core systems, the launch
configuration optionally allows to select a master project:

Whenever the master project is launched, the associated slave projects will also be launched. This can be
used to enforce the required start order of the TRACE32 GUI executables.

You can see the Launch Configuration type (Master or Slave) in the top left corner of the dialog:

NOTE: Slave projects cannot be used as Master projects for a third project.

If you need a complex launch topology, please either create copies of launch
configurations or use t32start.exe (Windows only).
 Coupling for Eclipse 18 Debugger Startup
©1989-2015 Lauterbach GmbH

Breakpoint Synchronization

The Breakpoint Synchronization feature automatically communicates the breakpoints set in TRACE32 to
Eclipse and vice versa. Breakpoints can e.g. be set in TRACE32 while editing source code in Eclipse.

The Eclipse editor works on source lines and symbols and cannot handle memory addresses, assembler
instructions or variables. So Breakpoint Synchronization is limited to program breakpoints on HLL lines.

Like in TRACE32, any breakpoint set on a source line that does not have object code associated with it will
be promoted to the next following line with object code. Trying to set the breakpoint on line 1 in the sample
below will therefore move it to line 3, and then will look like this:

Sometimes it is required to temporarily disable breakpoint synchronization:

• Breakpoints should not be set during the startup of a target board, until it has been initialized
(e.g. by a PRACTICE script that selects the chip, sets register values, enables RAM, etc.)

• Before the debugger has loaded symbol information, any attempt to set an HLL breakpoint will
fail with an error message. This should therefore be avoided.

Both cases can occur when breakpoints are set within the Eclipse IDE before starting TRACE32. This can
happen either due to user interaction, or because the breakpoints were set in a previous Eclipse session and
then reloaded when opening the Eclipse project again.

In these cases, please disable and enable breakpoint synchronization via the TRACE32 command:

When starting TRACE32, breaktransfer is OFF by default. If breaktransfer is not ’on’ in TRACE32, no
breakpoints will be transferred in either direction. Typically you switch it ON in a startup script:

It is possible to set breakpoints in Eclipse while breakpoint transfer is disabled. Eclipse will remember these
breakpoints and communicate them to TRACE32 as soon as the transfer is enabled again.

 1: #define BAR 1
 2: #define FOO “hello.c”
O 3: int main(int argc, char** argv) {

 setup.breaktransfer [on | off] default: OFF

wait 2s
setup.breaktransfer OFF
SYStem.Up

do target_init.cmm
do target_load.cmm

setup.breaktransfer ON

; give Eclipse time to connect
; OFF, in case target is restarted

; target board initialization
; load .elf file with symbol info

; now start breakpoint synch.
 Coupling for Eclipse 19 Breakpoint Synchronization
©1989-2015 Lauterbach GmbH

Edit Source Functionality

The Edit Source functionality will ‘jump’ from any TRACE32 window containing source code to Eclipse:

The corresponding Eclipse functionality is Open In Trace32 from the context menu that opens when you
right-click a source line in the Eclipse editor pane:

The TRACE32 Data.List command was enhanced (in 2009) to accept line numbers. You can display
assembly code and set breakpoints in a Data.List window. This is more convenient for debugging work than
an EDIT window, therefore plug-in versions 1.3.2 and later use Data.List for Open In Trace32.

NOTE: Without attached Eclipse IDE, the TRACE32 Edit Source menu command opens
the TRACE32 internal editor.

This default behavior can be restored when an Eclipse IDE is attached with
SETUP.EDITEXT OFF, e.g. in your t32.cmm startup script.
 Coupling for Eclipse 20 Edit Source Functionality
©1989-2015 Lauterbach GmbH

Troubleshooting

Eclipse

Breakpoint Synchronization and Edit Source fail

Symptom: Starting TRACE32 from Eclipse works fine but Breakpoint Synchronization and Edit Source fail.

Not all Source Code files are defined inside an Eclipse Project

For Eclipse, all source code needs to be organized within Eclipse projects. If a source file is not part of an
Eclipse project, the Lauterbach TRACE32 Eclipse plug-in cannot synchronize breakpoints or provide the
Edit Source functionality.

The problem can also occur when existing projects are imported into Eclipse without selecting the option
Copy projects into workspace.

Source Code Path names don’t match between TRACE32 and Eclipse

The name of the source file path inside Eclipse must match the name of the source file loaded by TRACE32.
For projects compiled within Eclipse this should be automatically satisfied.

If source files are compiled outside of Eclipse, in a different location in the file system:

• TRACE32 will find and load the source files based on the location recorded in the debug
information from the executable file.

• Eclipse will not recognize the files and will not allow to set any breakpoint there.

The solution is to copy the source files into the Eclipse workspace, and to configure TRACE32 to load the
source files from there.

This is done with the Data.Load command options /strippath and /strippart, and with commands like
sYmbol.SourcePATH.SetBaseDir. (Please see sYmbol.SourcePATH for all available options.)
 Coupling for Eclipse 21 Troubleshooting
©1989-2015 Lauterbach GmbH

Plug-in Connect Error Message in TRACE32

Check the TRACE32 AREA window for one of the warnings

The command SETUP.BreakTransfer ON causes this warning if it is run before the connection between
debugger and Eclipse is established. This may happen if the command is used early during debugger
startup (e.g. from t32.cmm). To fix this problem, add a short delay in your PRACTICE script (e.g. wait 1s)
before enabling breakpoint transfer.

Eclipse plugin not connected. Disabling breakpoint transfer.

SETUP.BreakTransfer: no listener registered.

SETUP.BreakTransfer ON: no listener registered, transfer disabled.
 Coupling for Eclipse 22 Troubleshooting
©1989-2015 Lauterbach GmbH

Update Site not Found (http-Proxy Settings OK)

Some Eclipse 3.1 installations cannot connect to an update server. The reason seems to be that the Java
Runtime Environment executing Eclipse re-uses invalid proxy settings from one of the web browsers that are
installed on the host (Firefox, IE, Opera, …). Configuring the proxy settings for all web browsers may solve
the problem. One workaround for this issue is to use a Local Update Site for installation.

For a discussion about this, see: https://bugs.eclipse.org/bugs/show_bug.cgi?id=101575

Using a Local Update Site for installation:

• A Local Update Site consists of artifacts.jar and content.jar plus two folders features and
plugins with the jar files required for the selected installation.

• A ZIP or JAR archive file that contains such a structure can also be used.

• The complete Lauterbach Update Site can be downloaded from
 http://www.lauterbach.com/eclipse and then used as Local Update Site.

Failed to Connect to TRACE32

Symptom: Launching TRACE32 from Eclipse works, it starts up fine. However, after some time-out, Eclipse
complains ’Failed to connect to TRACE32 on port 20000’.

Please make sure the TRACE32 “Remote API” is enabled (the TRACE32 configuration file contains
RCL=NETASSIST and the PORT number is properly set).

Please see Creation of Launch Configurations for a detailed example.

Unable to Load Class

Please upgrade to Java 1.5 or later, if Eclipse reports this error message

To start Eclipse with a particular JRE installation, you can use this syntax:

NOTE: Eclipse versions 3.4 and earlier have an older plug-in installation system and
use site.xml file together with artifacts.xml and content.xml.

The files artifacts.jar and content.jar are packed (with zip or jar) versions of
artifacts.xml and content.xml. Just unpack them if you need the XML files.

Plug-in com.lauterbach.trace32.debug.t32 was unable to load class
com.lauterbach.trace32.debug.internal.ui.T32LaunchConfigurationTabGroup

eclipse.exe -vm \usr\java\jdk1.5.0_10\bin\java
 Coupling for Eclipse 23 Troubleshooting
©1989-2015 Lauterbach GmbH

https://bugs.eclipse.org/bugs/show_bug.cgi?id=101575
http://www.lauterbach.com/eclipse

TRACE32

Check Your TRACE32 Version

With the VERSION.view command, check the build version of your running TRACE32 GUI:
to work with the latest Eclipse plug-in it should be from February, 2013 (build rev. 42425) or later.

Illegal Character (xxxx) for this Context

TRACE32 prints error messages like “illegal character (xxxx) for this context” in the AREA window.

Please contact Lauterbach Support for a TRACE32 update. Please also note: If the TRACE32
maintenance license is expired, the new TRACE32 version will only work in demo mode.

Symbol not Found

Within one debug binary, usually each source file name matches one program module name. Linux and
some boot loaders do not follow this rule. If your project contains multiple source files with identical names at
different positions in the build file tree, TRACE32 might not be able to determine the correct module from the
breakpoint info it gets from Eclipse. To work around this problem, please rename the offending modules.

TRACE32 versions from February, 2013 (build rev. 42425) and later support an extended Break.Set
command that accepts full source path names. Plug-ins from version 1.3.9 use this mechanism.

Symbol not Found in this Context

Currently the mapping of breakpoints from Eclipse to TRACE32 assumes that the module name is identical
to the file name, but some compilers create UPPER-CASE module names while the file name is (as usual)
lower-case. One workaround for this problem is using the command sYmbol.CASE OFF.

t32.cmm not Executed

If your auto-start PRACTICE file t32.cmm is not executed by TRACE32, please check the TRACE32 Area
window for error messages. Any error suspends PRACTICE execution!

Example:

• TRACE32 does not execute your t32.cmm script.

• You see the error message “Online manual (help.t32) fails to load” in the AREA window

In the example he TRACE32 help index and tooltip file was not present in the TRACE32 SYS directory. This
error message stops PRACTICE execution. The commands in t32.cmm will not be executed.
 Coupling for Eclipse 24 Troubleshooting
©1989-2015 Lauterbach GmbH

Help Us Help You

To analyze an issue you report to us, we need to create a test environment, as similar to your installation as
possible. We also need this to verify that any issue is really fixed e.g. in the new TRACE32 revision.

To set up such a test environment, we need not only to know exactly how your Eclipse installation is
configured, but also about TRACE32. Here are the necessary steps to provide this information to us.

Export the Eclipse Error Log

Please include the full Eclipse Error Log as a file in your support request:

1. Open the Error Log view in Eclipse with Window > Show View > Error Log.

2. Click the Export icon on the Error Log view toolbar.

3. Save the log as a file.

4. Attach this file to your support request.

Export the Eclipse Configuration

Export the Eclipse configuration settings in text form to the clipboard. With this we can check your Eclipse
configuration for any missing or outdated components.

1. Open Help > About Eclipse.

2. Click the button Installation Details.

3. Select the Configuration tab.

4. Click Copy to Clipboard.

5. Paste the clipboard content into your support mail to Lauterbach.

Export TRACE32 Information

As an easy way to collect the necessary TRACE32 data (which TRACE32 revision, which Operating System
and 32bit or 64bit variant, which Lauterbach hardware, which firmware version you use, which target
architecture and CPU you are debugging with etc. etc.), please just follow these simple steps:

1. Download support.cmm from http://www.lauterbach.com/support/static/support.cmm

2. Start TRACE32 as usual. If possible, connect to the target and stop on a breakpoint.

3. Execute the downloaded support script (in TRACE32) with DO support.cmm
(on Windows you can drag and drop it from the Explorer window into the TRACE32 command
line).

4. The script will first show a form for contact data. If this is your first inquiry, please fill it in
(Name, Address and Email are vital, to make sure we can reach you with our response).

5. Then press the Save to File button.

6. Please attach the generated output (the saved text-file) in your support request.
 Coupling for Eclipse 25 Troubleshooting
©1989-2015 Lauterbach GmbH

Change Log

Plug-in Version 1.4.2

• Read project active configuration.

Plug-in Version 1.4.1

• Add CDT Project Variables support for Trace32 Debugger Launch

Plug-in Version 1.4.0

• Improve TRACE32 connection handling and launch error messages

Plug-in Version 1.3.9 - requires TRACE32 from February, 2013 (rev.42425) or later

• Add support for multiple source files with identical file names in the build tree

Plug-in Version 1.3.8

• Add CDT Build Variables support for Trace32 Debugger Launch

• Improve documentation (clarity, usability)

Plug-in Version 1.3.7

• Update Lauterbach Logo to current version

Plug-in Version 1.3.6

• Fix breakpoint synchronization problem (ignore conditional TRACE32 breakpoints)

Plug-in Version 1.3.5

• Improve Breakpoint processing for “OnChip” breakpoints

Plug-in Version 1.3.4

• Fix toolbar launch button problem with Ganymede and later versions

• Improve status information for Startup Script and Port number setting

• Fix problem with TRACE32 Port number 20000

Plug-in Version 1.3.3 - requires TRACE32 from January, 2009

• Improve TRACE32 configuration file parsing (ignore comments)

• Fix lock-up problem caused by non-canonical file names in debug binaries (e.g. ELF)

• Auto-start scripts: add seven second wait time after Eclipse start to allow long Startup Scripts to
finish before breakpoint synchronization attempt

[Earlier plug-in version notes removed.]
 Coupling for Eclipse 26 Change Log
©1989-2015 Lauterbach GmbH

	Coupling for Eclipse
	Introduction
	Supported Eclipse IDE and CDT version combinations
	Documentation Updates

	Brief Overview of Documents for New Users
	Abbreviations
	Typical Use Case
	Installation
	Requirements
	Lauterbach TRACE32 Eclipse Plug-In
	Add the Lauterbach TRACE32 Update Site
	Install the Plug-In

	Create Launch Configurations
	Debugger Startup
	Parameters for the Startup Script t32.cmm
	Invoke PRACTICE Scripts
	Invoke a Script from the Toolbar
	Add the Lauterbach Logo Button

	Single-Core Launch with Multiple Eclipse Projects
	Multi-Core Launch Configurations

	Breakpoint Synchronization
	Edit Source Functionality
	Troubleshooting
	Eclipse
	Breakpoint Synchronization and Edit Source fail
	Not all Source Code files are defined inside an Eclipse Project
	Source Code Path names don’t match between TRACE32 and Eclipse

	Update Site not Found (http-Proxy Settings OK)
	Using a Local Update Site for installation:

	Failed to Connect to TRACE32
	Unable to Load Class

	TRACE32
	Check Your TRACE32 Version
	Illegal Character (xxxx) for this Context
	Symbol not Found
	Symbol not Found in this Context
	t32.cmm not Executed

	Help Us Help You
	Export the Eclipse Error Log
	Export the Eclipse Configuration
	Export TRACE32 Information

	Change Log

